Copyright notice: The publishers of these articles hold the copyright. You may use these PDFs only in a manner consistent with the fair use provisions of United States copyright law. In particular, you may not distribute them, make them available for download by others, or use them for any profit-making enterprise. If you download a PDF from this page, please just print it and then discard the file.


Download the article for educational purposes by clicking on the title:

  1. Woodman, G.F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature400, 867-869. PMID: 10476964.

  2. Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences4, 432-440. PMID: 11058821.

  3. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92-114. PMID: 11248943.

  4. Woodman, G.F., Vogel, E.K., & Luck, S.J. (2001). Visual search remains efficient when visual working memory is fullPsychological Science, 12, 219-224. PMID: 11437304.

  5. Woodman, G.F., Vogel, E.K., & Luck, S.J. (2001). Attention is not unitary: Response to Cowan (2001).  Behavioral and Brain Sciences, 24, 153-154.

  6. Vecera, S.P., Vogel, E.K., & Woodman, G.F. (2002). Lower region: A new cue for figure-ground assignment. Journal of Experimental Psychology: General, 131, 194-205.  PMID: 12049239.

  7. Hopf, J.-M., Vogel, E.K., Woodman, G.F., Heinze, H.-J., & Luck, S.J. (2002). Localizing visual discrimination processes in time and spaceJournal of Neurophysiology, 88, 2088-2095. PMID: 12364530.

  8. Schmidt, B.K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memoryPerception & Psychophysics, 64, 754-763. PMID: 12201334.

  9. Woodman, G.F. & Luck, S.J. (2003). Serial deployment of attention during visual searchJournal of Experimental Psychology: Human Perception and Performance, 29,121-138. PMID: 12669572.

  10. Woodman, G.F. Vecera, S.P., & Luck, S.J. (2003). Perceptual organization influences visual working memoryPsychonomic Bulletin & Review, 10, 80-87. PMID: 12747493.

  11. Woodman, G.F. & Luck, S.J. (2003). Dissociations among attention, perception, and awareness during object-substitution masking. Psychological Science, 14, 605-611. PMID: 14629693.

  12. Woodman, G.F. & Luck, S.J. (2004). Visual search is slowed when visuospatial working memory is occupiedPsychonomic Bulletin & Review, 11, 269-274. PMID: 15260192.

  13. Yi, D.-J., Woodman, G.F., Widders, D., Marios, R. & Chun, M.M. (2004, August 01). Neural fate of ignored stimuli: Dissociable effects of perceptual and working memory loadNature Neuroscience, 7(9), 992-996. PMID: 15286791.

  14. Woodman, G.F. & Vogel, E.K. (2005). Fractionating working memory: consolidation and maintenance are independent processesPsychological Science, 16(2), 106-113. PMID: 15686576.

  15. Vogel, E. K., Woodman, G.F. & Luck, S.J. (2006). Pushing around the locus of selection: Evidence for the flexible-selection hypothesisJournal of Cognitive Neuroscience, 17(12),1907-1922. PMID: 16356328.

  16. Woodman, G.F. & Chun, M.M. (2006). The role of working memory and long-term memory in visual searchVisual Cognition, 14, 808-830.

  17. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memoryJournal of Experimental Psychology: Human Perception and Performance, 32, 1436-1451. PMID: 17154783.

  18. Woodman, G.F. & Yi, D.-J. (2007). Masked-target recovery requires focused attention on the target object. Visual Cognition, 15, 385-401.

  19. Woodman, G.F. & Luck, S.J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33, 363-377. PMID: 17469973. PMC2048820.

  20. Woodman, G.F., Luck, S.J., & Schall, J.D. (2007). The role of working memory representations in the control of attentionCerebral Cortex, 17, 118-124. PMID: 17725994. PMC2094040.

  21. Woodman, G.F., Kang, M.-S., Rossi, A.F., & Schall, J.D. (2007). Nonhuman primate event-related potentials indexing covert shifts of attentionProceedings of the National Academy of Sciences, 104, 15111-15116. PMID: 17848520. PMCID: PMC1986621

  22. Johnson, J.S., Woodman, G.F., Braun, E. & Luck, S.J. (2007). Implicit memory influences the allocation of attention in visual cortexPsychonomic Bulletin & Review, 14(5), 834-839.  PMID: 18087946.

  23. Schall, J.D., Paré, M., & Woodman, G.F. (5 October 2007). Comment on "Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices"Science, 318, 44b.

  24. Cohen, J.Y., Pouget, P., Woodman, G.F., Subraveti, C.R., Schall J.D. & Rossi, A.F. (2007). Difficulty of visual search modulates neural interactions and response variability in the Frontal Eye FieldJournal of Neurophysiology98, 2580-2587. PMID: 17855586.

  25. Woodman, G.F., Kang, M.-S., Thompson, K., & Schall, J.D. (2008). The effect of visual search efficiency on response preparation: Neurophysiological evidence for discrete flowPsychological Science, 19, 128-136. PMID: 18271860.

  26. Woodman, G.F. & Vogel, E.K. (2008). Selective storage and maintenance of an object’s features in visual working memoryPsychonomic Bulletin & Review, 15, 223-229. PMID: 18605507.

  27. Cohen, J.Y., Heitz, R.P., Schall J.D., & Woodman, G.F. (2009). On the origin of event-related potentials indexing covert attentional selection during visual searchJournal of Neurophysiology, 102, 2375-2386. PMID: 19675287PMCID: PMC2775385.

  28. Woodman, G.F. Arita, J.T., & Luck, S.J. (2009). A cuing study of the N2pc component: An index of attentional deployment to objects rather than spatial locations.  Brain Research, 1297, 101-111. PMID: 19682440. PMCID: PMC2758329.

  29. Hyun, J.-S., Woodman, G.F., Vogel, E.K., Hollingworth A. & Luck, S.J. (2009). The comparison of visual working memory representations with perceptual inputsJournal of Experimental Psychology: Human Perception and Performance, 35(4), 1140-1160. PMID: 19653755. PMCID: PMC2726625.

  30. Cohen, J.Y., Heitz, R.P., Woodman, G.F., & Schall J.D. (2009). Neural basis of the set-size effect in frontal eye field: Timing of attention during visual searchJournal of Neurophysiology, 101, 1699-1704. doi:10.1152/jn.00035.2009. PMID: 19176607. PMCID: PMC2695643. 

  31. Cohen, J.Y., Heitz, R.P., Woodman, G.F., & Schall J.D. (2009). Reply to Balan and Gottlieb [comment]Journal of Neurophysiology, 102, 1342-1343. doi:10.1152/jn.00403.2009

  32. Cohen, J.Y., Pouget, P., Heitz, R.P., Woodman, G.F., & Schall J.D. (2009). Biophysical support for functionally distinct cell types in the Frontal Eye FieldJournal of Neurophysiology, 101, 912-916. PMID: 19052112. PMCID: PMC2657052.

  33. Hyun, J.-S., Woodman, G.F. & Luck, S.J. (2009). The role of attention in the binding of surface features to locations.  Visual Cognition, 17, 10-24. PMCID: PMC3824248.

  34. Cohen, J.Y., Crowder, E.A., Heitz, R.P., Subraveti, C.R., Thompson, K.G., Woodman, G.F., & Schall J.D. (2010). Cooperation and competition among frontal eye field neurons during visual target selectionJournal of Neuroscience, 30, 3227-3238PMID: 20203182. PMCID: PMC2844339.

  35. Woodman, G.F. (2010). Masked targets trigger event-related potentials indexing shifts of attention but not error detection.  Psychophysiology, 47, 410-414. PMID: 20070578. PMCID: PMC2956465.

  36. Woodman, G.F. & Luck, S.J. (2010). Why is information displaced from visual working memory during visual search?  Visual Cognition, 18, 275-295doi:10.1080/13506280902734326. PMCID: PMC3817820.

  37. Woodman, G.F. (2010). A brief introduction to the use of event-related potentials (ERPs) in studies of perception and attention.  Attention, Perception & Psychophysics, 72(8), 2131-2146. PMID: 21097848. PMCID: PMC3816929.

  38. Heitz, R.P., Cohen, J.Y., Woodman, G.F. & Schall J.D. (2010). Neural correlates of correct and errant attentional selection revealed through N2pc and frontal eye field activityJournal of Neurophysiology, 104, 2433-2441. PMID: 20810692. PMCID: PMC2997024.

  39. Woodman, G.F. & Vecera, S.P. (2011). The cost of accessing an object’s feature stored in visual working memory.  Visual Cognition, 19, 1-12. PMID: 21221413. PMCID: PMC3017355.

  40. Carlisle, N.B. & Woodman, G.F. (2011). Automatic and strategic effects in the guidance of attention by working memory representations.  Acta Psychologica, 137, 217-225. PMID: 20643386. PMCID: PMC2991492.

  41. Woodman, G.F. & Arita, J.T. (2011). Direct electrophysiological measurement of attentional templates in visual working memory.  Psychological Science, 22, 212-215. PMID: 21193780. PMCID: PMC3816932.

  42. Carlisle, N.B., Arita, J.T., Pardo, D., & Woodman, G.F. (2011). Attentional templates in visual working memory. Journal of Neuroscience, 35(25), 9315-9322. PMID: 21697381. PMCID: PMC3147306.

  43. Godlove, D.C., Garr, A.K., Woodman, G.F., & Schall, J.D. (2011). Measurement of the extraocular spike potential during saccade countermandingJournal Neurophysiology,106, 104-114PMID: 21490279. PMCID: PMC3129738.

  44. Carlisle, N.B. & Woodman, G.F. (2011). When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention. Journal of Cognitive Neuroscience, 23, 2650-2664. PMCID: PMC3981747.

  45. Kang, M.-S., Hong, S.W., Blake, R. & Woodman, G.F. (2011). Visual working memory contaminates perceptionPsychonomic Bulletin & Review, 18, 860-869. PMID: 21713369. PMCID: PMC3371032.

  46. Kang, M.-S., Blake, R. & Woodman, G.F. (2011). Semantic analysis does not occur in the absence of awareness induced by interocular suppression. Journal of Neuroscience, 31,13535-13545. PMID: 21940445. PMCID: PMC3209531.

  47. Godlove D.C., Emeric, E.E., Segovis, C.M., Young, M.S., Schall, J.D. & Woodman, G.F. (2011). Event-related potentials elicited by errors during the stop-signal task.  I: Macaque monkeysJournal of Neuroscience, 31, 15640-15649. PMID: 22049407. PMCID: PMC3241968.

  48. Woodman, G.F., Vogel, E.K. & Luck, S.J. (2012). Flexibility in visual working memory: Accurate change detection in the face of irrelevant variations in positionVisual Cognition, 20, 1-28PMCID: PMC3266348.

  49. Williams, M. & Woodman, G.F. (2012). Directed forgetting and directed remembering in visual working memoryJournal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1206-1220. PMID: 22409182. PMCID: PMC3817833.

  50. Reinhart R.M.G., Carlisle, N.B., Kang, M.-S. & Woodman, G.F. (2012). Event-related potentials elicited by errors during the stop-signal task.  II: Human effector specific error responsesJournal of  Neurophysiology, 107, 2794-2807. PMCID: PMC3362284.

  51. Arita, J.T., Carlisle, N.B., & Woodman, G.F. (2012). Templates for rejection: Configuring attention to ignore task-irrelevant featuresJournal of Experimental Psychology: Human Perception and Performance, 38, 580-584. PMID: 22468723. PMCID: PMC3817824.

  52. Reinhart R.M.G., Heitz, R.P., Purcell, B.A., Weigand, P.K., Schall, J.D. & Woodman, G.F. (2012). Homologous mechanisms of visuospatial working memory maintenance in macaque and human: Properties and sourcesJournal of Neuroscience, 32, 7711-7722. PMCID: PMC3373257.

  53. Woodman, G.F. (2012). Homologues of human event-related potential components in nonhuman primates. In Luck, S.J. & Kappenman, E.S. (Eds.), The Oxford Handbook of Event-Related Potential Components.  (pp. 611-625).  New York: Oxford University Press.

  54. Pouget, P., Arita, J., & Woodman, G.F. (2012). Primate visual attention: How studies of monkeys have shaped theories of selective processing. In Lazareva O., Shimizu T., & Wasserman E. (Eds.), How Animals See the World: Behavior, Biology, and Evolution of Vision. (pp. 335-350). New York: Oxford University Press.

  55. Woodman, G.F. & Schroeder, C.E. (2012). Using nonhuman primates to study the micro- and macro-dynamics of neural mechanisms of attention In Posner, M.I. (Ed.), Cognitive Neuroscience of Attention. (pp. 219-228). New York: Guilford Press.

  56. Schall, J.D. & Woodman, G.F. (2012).  A stage theory of attention and action. In Mangun, G.R. (Ed.),  Neuroscience of Attention.  (pp. 187-208).  New York: Oxford University Press.

  57. Zhang, W., Johnson, J.S., Woodman, G.F., & Luck, S.J. (2012). Features and conjunctions in visual working memory.  In Wolfe, J. & Robertson, L. (Eds.),  Attention and Cognition. (pp. 369-377). New York: Oxford University Press.

  58. Kang, M.-S., Blake, R., & Woodman, G.F. (2012). The defining characteristics of visual awareness and event-related potentials indexing semantic processing [Response to Heyman & Moors]. Journal of Neuroscience.

  59. Purcell, B.A.,  Schall, J.D. & Woodman, G.F. (2013). Timing of attentional selection in frontal eye fied and posterior event-related potentials during pop-out searchJournal of Neurophysiology, 109, 557-569. PMCID: PMC3417208.

  60. Williams, M., Hong, S.W., Carlisle, N.B., Kang, M.-S. & Woodman, G.F. (2013). The benefit of forgettingPsychonomic Bulletin & Review, 20, 348-355. PMCID: PMC3593955.

  61. Woodman, G.F.  (2013). Viewing the control and dynamics of visual attention through the lens of electrophysiologyVision Research, 80, 7-18. PMCID: PMC3594578.

  62. Williams, M., Pouget, P., Boucher, L. & Woodman, G.F. (2013). Visual-spatial attention aids the maintenance of object representations in visual working memory.  Memory & Cognition, 41, 698-715. PMCID: PMC3655125.

  63. Woodman, G.F., Carlisle, N.B. & Reinhart, R.M.G. (2013). Where do we store the memory representations that control attention? Journal of Vision, 13(1):1, 1-17. dio: 10.1167/13.3.1PMCID: PMC3590103.

  64. Carlisle, N.B. & Woodman, G.F. (2013). Reconciling conflicting electrophysiological findings on the guidance of attention by working memory.  Attention, Perception & Psychophysics, 75, 1330-1335. PMCID: PMC3800228.

  65. Reinhart, R.M.G. & Woodman, G.F. (2014). Oscillatory coupling reveals the dynamic reorganization of large-scale neural networks as cognitive demands changeJournal of Cognitive Neuroscience, 26, 175-188. PMCID: PMC3990735.

  66. Kang, M.-S. & Woodman, G.F. (2014). The neurophysiological index of visual working memory maintenance is not due to load dependent eye movementsNeuropsychologia, 56, 63-72. PMCID: PMC3974880.

  67. Kang, M.-S., DiRaddo, A., Logan, G.D. & Woodman, G.F. (2014). Electrophysiological evidence for preparatory reconfiguration before voluntary task switches but not cued task switchesPsychonomic Bulletin & Review, 21, 454-461. PMCID: PMC3933470.

  68. Reinhart, R.M.G. & Woodman, G.F. (2014). Causal control of medial-frontal cortex governs performance monitoring and learningJournal of Neuroscience, 34, 4214-4227. PMCID: PMC3960465.

  69. Godlove, D.C., Maier, A., Woodman, G.F. & Schall, J.D. (2014). Microcircuitry of agranular frontal cortex relative to the canonical cortical microcircuitJournal of Neuroscience, 34, 5355-5369. PMCID: PMC3983808.

  70. Maxcey, A.M. & Woodman, G.F. (2014). Can we throw information out of visual working memory and does this leave information residue in long-term memory? Frontiers in Psychology, 5, 294. doi: 10.3389/fpsyg.2014.00294

  71. Reinhart, R.M.G. & Carlisle, N.B. & Woodman, G.F. (2014). Visual working memory gives up attentional control early in learning: Ruling out inter-hemispheric competition. Psychophysiology, 51, 800-804PMCID: PMC4107137.

  72. Reinhart, R.M.G. & Woodman, G.F. (2014). High stakes trigger the use of multiple memories to enhance the control of attentionCerebral Cortex, 24, 2022-2035. PMCID: PMC4089381.

  73. Ko, P.C., Duda, B., Hussey, E., Mason, E., Molitor, R., Woodman, G.F. & Ally, B.A. (2014) Understanding age-related reductions in visual working memory capacity: Examining the stages of change detectionAttention, Perception & Psychophysics, 76, 2015-2030PMCID: PMC4098047.

  74. Wong, T.K., Peng, C., Fratus, K.N., Woodman, G.F. & Gauthier, I. (2014) Perceptual expertise for musical notation engages the primary visual cortex with top-down expectationJournal of Cognitive Neuroscience, 26, 1629-1643PMCID: PMC4074229.

  75. Maxcey, A.M. & Woodman, G.F. (2014). Forgetting induced by recognition of visual imagesVisual Cognition, 22, 789-808. PMCID: PMC4339795.

  76. Reinhart, R.M.G. & Woodman, G.F. (2015). Enhancing long-term memory with stimulation tunes visual attention in one trialProceedings of the National Academy of Sciences, 112, 625-630. PMCID: PMC4299199.

  77. Fukuda, K. & Woodman, G.F. (2015). Predicting and improving recognition memory using single-trial electrophysiologyPsychological Science26, 1026-1037.

  78. Maxcey, A.M., Fukuda, K., Song, W.S. & Woodman, G.F.  (2015). Using electrophysiology to to demonstrate that cueing affects long-term memory storage over the short termPsychonomic Bulletin & Review. [Jan 21, Epub ahead of print] PMCID: PMC4510034.

  79. Reinhart, R.M.G. McClenahan, L.J. & Woodman, G.F. (2015). Visualizing trumps vision when training attentionPsychological Science, 26, 1114-1122PMCID: PMC4504754.

  80. Reinhart, R.M.G. & Woodman, G.F. (2015). The surprising temporal specificity of direct-current stimulationTrends in Neurosciences, 38, 459-461.

  81. Reinhart, R.M.G., Zhu, J., Park, S. & Woodman, G.F. (2015). Synchronizing theta oscillations with direct-current stimulation restores adaptive control in schizophreniaProceedings of the National Academy of Science, 112(30), 9448-9453. PMCID: PMC4522782.

  82. Reinhart, R.M.G., Zhu, J., Park, S. & Woodman, G.F. (2015). Medial-frontal stimulation enhances learning in schizophrenia by restoring prediction-error signalingJournal of Neuroscience, 35, 12232-12240PMCID: PMC4556788

  83. Cosman, J.D.,  Atreya, P.V. & Woodman, G.F. (2015). Transient reduction of visual distraction following electrical stimulation of the prefrontal cortex. Cognition, 145, 73-76.PMCID: In Process.

  84. Woodman, G.F. & Luck, S.J. (2015). Using working memory to control attentional deployment to items in complex scenes. In Fawcett, J., Risko, E.F. & Kingstone, A. (Eds.), The Handbook of Attention. (pp. 173-197). Cambridge, MA: MIT Press.  

  85. Fukuda, K., Woodman, G.F. & Vogel, E.K. (2015). Individual differences in visual working memory capacity: Contributions of attentional control to storage. In Jolicoeur P., Lefebvre C., & Martinez-Trujillo J. (Eds.), Mechanisms of Sensory Working Memory: Attention and Performance XXV (pp. 105-120). New York: Academic Press.

  86. Cosman, J.D.,  Arita, J.T. & Ianni, J.D. & Woodman, G.F. (2016). Electrophysiological measurement of information flow control in the human brain. Psychophysiology, 52, 535-543. PMCID: In Process

  87. Reinhart, R.M.G., McClenahan, L.J. & Woodman, G.F. (2016). Attention’s accelerator. Psychological Science, 27, 790-798. PMCID: PMC4899122

  88. Reinhart, R.M.G., Xiao, W., McClenahan, L.J. & Woodman, G.F. (2016). Electrical stimulation of visual cortex can immediately improve spatial vision. Current Biology, 26(14) 1867-1872. NIHMSID 786795. 

  89. Fukuda, K., Kang, M.-S. & Woodman, G.F. (2016). Distinct neural mechanisms for spatially lateralized and spatially global working memory representations. Journal of Neurophysiology, 116, 1715-1727.

  90. Reinhart, R.M.G., Cosman, J.D., Fukuda, K., & Woodman, G.F. (2017). Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Attention, Perception & Psychophysics, 793-23.

  91. Fukuda, K. & Woodman, G.F. (2017). Visual working memory buffers information retrieved from visual long-term memoryProceedings of the National Academy of Science, 114(20), 5306-5311. PMCID: PMC5441785.

  92. Rugo, K., Tamler, K., Woodman, G.F. & Maxcey, A.M. (2017). Recognition induced forgetting of faces in visual long-term memory. Attention, Perception & Psychophysics, 79(7), 1878-1885. PMCID: PMC5935798.

  93. Cosman, J.D., Lowe, K.A., Zinke, W., Woodman, G.F., & Schall, J.D. (2018). Prefrontal control of visual distraction.  Current Biology, 28(3), 414-420. PMCID: PMC5922980.

  94. Heritage, A.J., Long, L.J., Woodman, G.F. & Zald, D.H. (2018). Personality correlates of individual differences in the recruitment of cognitive mechanisms when rewards are at stakePsychophysiology, 55(2), doi: 10.1111/psyp.12987. PMCID: PMC5773371.

  95. Servant, M., Cassey, P., Logan, G.D. & Woodman, G.F. (2018). The neural bases of automaticityJournal of Experimental Psychology: Learning, Memory, and Cognition44(3), 440-464. PMCID: PMC5862722.

  96. Woodman, G.F. & Fukuda, K. (2018). Visual working memory and cognition.  Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, Fourth Edition. Hoboken, New Jersey: John Wiley & Sons, Inc.

  97. Maier, A., Schall, J.D. & Woodman, G.F. (2018). Neural recordings at multiple scales.  Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, Fourth Edition. Hoboken, New Jersey: John Wiley & Sons, Inc.

  98. Reinhart, R.M.G., Park, S. & Woodman, G.F. (2019). Localization and elimination of attentional dysfunction in schizophreniaSchizophrenia Bulletin, 45, 96-105.

  99. Rajsic, J., Burton, J.,  & Woodman, G.F. (2019). The contralateral delay activity tracks the storage of visually presented letters and words.  Psychophysiology, 56, e13282.

  100. Sundby C. Woodman, G.F. & Fukuda, K. (2019). Electrophysiological and behavioral evidence for attentional up-regulation, but not down-regulation when encoding pictures into long-term memoryMemory & Cognition, 47(2), 351-364.

  101. Carlisle, N.B. & Woodman, G.F. (2019). Quantifying the attentional impact of working memory matching targets and distractors. Visual Cognition, 27, 452-466.

  102. Wang, S., Rajsic, J. & Woodman, G.F. (2019). The contralateral delay activity tracks the sequential loading of visual working memory, unlike alpha suppressionJournal of Cognitive Neuroscience, 31, 1689-1698.

  103. Maxcey, A.M. & Woodman, G.F. (2019). From start to finish: A practical guide to becoming a scientist in psychology and neuroscience. San Diego, CA: Cognella, Inc.

  104. Woodman, G.F. & Maxcey, A.M. (2019). The machines in our brains: Cognitive mechanisms of information processing. San Diego, CA: Cognella, Inc.

  105. Rajsic, J. & Woodman, G.F. (2020). Do we remember templates better so that we can reject distractors better? Attention, Perception & Psychophysics, 82, 269–279.

  106. Rajsic, J., Hilchey, M.D., Woodman, G.F. & Pratt, J. (2020). Visual working memory load does not eliminate visual motor repetition effectsAttention, Perception & Psychophysics, 82,1290-1303.

  107. Rajsic, J., Carlisle, N.B. & Woodman, G.F. (2020). What not to look for: Electrophysiological evidence that searchers prefer positive templates. Neuropsychologia, 140, 107376. doi: 10.1016/j.neuropsychologia.2020.107376.

  108. Herrera, B., Sajad, A. Woodman, G.F., Schall, J.D., & Riera, J. (2020). A minimal biophysical model of neocortical pyramidal cells: Implications for frontal cortex microcircuitry and field potential generationJournal of Neuroscience, 40(44), 8513-8529.

  109. Errington, S., Woodman, G.F., & Schall, J.D. (2020). Dissociation of medial frontal beta-bursts and executive control. Journal of Neuroscience, 40(48), 9272-9282.

  110. Wang, S. Megla, E.E. & Woodman, G.F. (2021). Stimulus induced alpha suppression tracks the difficulty of attentional selection, not visual working memory storage. Journal of Cognitive Neuroscience, 33 (3): 536–562.

  111. Zhao, C. & Woodman, G.F. (2021). Converging Evidence That Neural Plasticity Underlies Transcranial Direct-Current Stimulation. Journal of Cognitive Neuroscience, 33 (1): 146-157.

  112. Sutterer, D.W., Polyn, S.M. & Woodman, G.F. (2021). Alpha-band activity tracks a 2- dimensional spotlight of attention during spatial working memory maintenanceJournal of Neurophysiology, 125: 957–971.

  113. Megla E.E., Woodman, G.F. & Maxcey, A.M. (2021). Induced forgetting is the result of true forgetting, not shifts in decision-making thresholdsJournal of Cognitive Neuroscience, 33 (6): 1129–1141.

  114. Megla E.E. & Woodman, G.F. (2021). Medium strength visual long-term memories are the most fragilePsychonomic Bulletin & Review.

  115. Woodman, G.F. (2021).  Spatial location is filtered out of visual working memory representations when task irrelevant, just like other features. Attention, Perception & Psychophysics, 83(4), 1391-1396.

  116. Maxcey, A.M., Mancuso, E., Scotti, P.S., Spinelli, E. & Woodman, G.F. (2022). How to induce the forgetting of pictures.  Visual Memory.  Brady, T. & Bainbridge, W. Eds. (pp. 152-172). New York: Routledge.

  117. Westerberg, J.A., Schall, M.S., Maier, A., Schall, J.D. & Woodman, G.F. (2022). Cortical columns in area V4 produce the event-related potential index of attention. eLife.11: e72139.

  118. Woodman, G.F., Wang, S., Sutterer, D.W., Reinhart, R.M.G. & Fukuda, K. (2022).  Alpha suppression indexes a spotlight of visual-spatial attention that can shine on both perceptual and memory representations. Psychonomic Bulletin & Review, 29(3), 681-698.

  119. Rosca, C.G. Sutterer, D. & Woodman, G.F. (in press). Does motor noise contaminate estimates of the precision of visual working memory? Visual Cognition, 30(3), 195-201.

  120. Lee, H.-S., Rast, C., Shenoy, S., Dean, D., Woodman, G.F., & Park, S. (2022). A meta-analytic review of transcranial direct current stimulation (tDCS) on general psychopathology symptoms of schizophrenia, immediate improvement followed by a return to baseline. Psychiatry Research, 310, 114471.

  121. Zhao, C., Fukuda, K., & Woodman, G.F. (2022). Cross-frequency coupling of frontal theta and posterior alpha is unrelated to the fidelity of visual long-term memory encoding. Visual Cognition, 30(6), 379-392.

  122. Westerberg, J.A., Herrera, B., Schall, M.S., Maier, A., Woodman, G.F., Schall, J.D. & Riera, J.J. (2022). Resolving the mesoscopic missing link: Biophysical modeling of EEG from cortical columns in primates. NeuroImage. Aug 22, Online ahead of print.

  123. Zhao, C., Fukuda, K., Park S., & Woodman, G.F. (2022). Even affective changes induced by the global health crisis are insufficient to perturb the hyper stability of visual long-term memory. Cognition Research: Principles and Implications, 7(1): 62.

  124. Wang, S., Cong, S. H., & Woodman, G. F. (2023). Statistical learning speeds visual search: More efficient selection, or faster response? Journal of Experimental Psychology: General, 152(6), 1723–1734.

  125. Itthipuripat S., Phangwiwat T., Wiwatphonthana P., Sawetsuttipan P., Chang K.-Y., Störmer V, Woodman G.F., and Serences J. (2023). Dissociable neural mechanisms underlie the effects of attention on visual appearance and response bias. Journal of Neuroscience, 43(39), 6628-6652.

  126. Westerberg, J.A., Schall, J.D., Woodman, G.F., & Maier, A. (2023). Feedforward attentional selection in sensory cortex. Nature Communications. Sep 26; 14(1): 5993. PMCID: PMC10522696.

  127. Zhao, C., Fukuda, K., & Woodman, G.F. (in press). Target recognition and lure rejection: two sides of the same memorability coin? Visual Cognition.

  128. Wang, S. & Woodman, G.F. (in press). Learning establishes multiple attentional sets that simultaneously guide attention. Journal of Experimental Psychology: General.

  129. Itthipuripat, S.,  Phangwiwat, T., Punchongharn, P., Wongsawat, Y., Chatnuntawech, I., Wang, S., Chunharas, C., Sprague, T. & Woodman, G.F. Sustained attention operates via dissociable neural mechanisms across different eccentric locations. Scientific Reports.